Morphology controlling method for amorphous silica nanoparticles and jellyfish-like nanowires and their luminescence properties

نویسندگان

  • Haitao Liu
  • Zhaohui Huang
  • Juntong Huang
  • Song Xu
  • Minghao Fang
  • Yan-gai Liu
  • Xiaowen Wu
  • Shaowei Zhang
چکیده

Uniform silica nanoparticles and jellyfish-like nanowires were synthesized by a chemical vapour deposition method on Si substrates treated without and with Ni(NO3)2, using silicon powder as the source material. Composition and structural characterization using field emission scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy and fourier-transform infrared spectroscopy showed that the as-prepared products were silica nanoparticles and nanowires which have amorphous structures. The form of nanoparticles should be related to gas-phase nucleation procedure. The growth of the nanowires was in accordance with vapour-liquid-solid mechanism, followed by Ostwald ripening to form the jellyfish-like morphology. Photoluminescence and cathodoluminescence measurements showed that the silica products excited by different light sources show different luminescence properties. The emission spectra of both silica nanoparticles and nanowires are due to the neutral oxygen vacancies (≡Si-Si≡). The as-synthesized silica with controlled morphology can find potential applications in future nanodevices with tailorable photoelectric properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced luminescence of Er+3-doped Zinc-Lead-Phosphate Glass embedded SnO2 nanoparticles

Introduction of the nanoparticles in the bulk glass received a large interest due to their versatile application. The composition of Er+3-doped Zinc-Lead-Phosphate glass samples are prepared by melt-quenching technique. The structural and optical properties of phosphate glass have been examined by x-ray diffraction, fie...

متن کامل

In Vivo Repeatedly Charging Near‐Infrared‐Emitting Mesoporous SiO2/ZnGa2O4:Cr3+ Persistent Luminescence Nanocomposites

Near-infrared (NIR) persistent phosphor ZnGa2O4:Cr3+ (ZGC) has unique deep-tissue rechargeable afterglow properties. However, the current synthesis leads to agglomerated products with irregular morphologies and wide size distributions. Herein, we report on in vivo rechargeable mesoporous SiO2/ZnGa2O4:Cr3+ (mZGC) afterglow NIR-emitting nanocomposites that are made by a simple, one-step mesoporou...

متن کامل

Rice Straw Ash-A Novel Source of SilicaNanoparticles

In this study chemical method of dissolution-Precipitation was applied to produce amorphous silica nanoparticles from rice straw ash (RSA), the waste material of rice cultivation. The morphology, particle size, structure and area of specific surface of synthesized amorphous silica nanoparticles were evaluated using transmission electron microscopy (TEM), X-ray diffraction analysis (XRD) and BET...

متن کامل

Chainlike silicon nanowires: Morphology, electronic structure and luminescence studies

The chainlike silicon nanowires SiNWs have been synthesized by fluctuating the pressure of the carrier gas in the growth process. The chainlike SiNWs comprise crystalline Si nanoparticles interconnected by amorphous silicon oxide wires. In addition to the sphere, other interesting shapes such as rectangular and triangular Si nanoparticles in chainlike SiNWs were also observed. X-ray absorption ...

متن کامل

Synthesis and Characterizations of Silica Nanoparticles by a New Sol-Gel Method

Silica nanoparticles were synthesized by chemical methods from tetraethylorthosilicate (TEOS), polyethylene glycol 5% and hydrochloric acid 0.001 N. The sol-gel process was applied for the preparation of nano silica gel. This method is hydrolysis and condensation reactions of TEOS as precursor of silica. The optimal synthesis conditions for the preparation of silica nanoparticles were obtained ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016